ULTRA-LOW-VOLTAGE IC DESIGN

Carlos Galup-Montoro and Márcio Cherem Schneider

Laboratório de Circuitos Integrados Universidade Federal de Santa Catarina, Florianópolis, Brazil http://www.lci.ufsc.br/

Outline

- 1 Introduction to ultra-low-voltage (ULV) CMOS
- 2 Subthreshold MOSFET model
- **3 Subthreshold CMOS logic and Schmitt trigger**
- **4 ULV rectifiers**
- **5 ULV oscillators**

Chapter 1 Introduction to ultra-low-voltage CMOS

Motivations for low voltage

SBCCI 2015

Motivations for low voltage

2. Power dissipation

Switching power

Power = Energy/transition
$$*f = C_L * V_{dd}^2$$

Short-circuit power : due to non-zero rise/fall times

Motivations for low voltage

3. Low supply voltages

Thermoelectric generator

Photovoltaic cell

V_{o(dark room)} ≈ 100 - 200 mV

Energy provided by

trees

* Love et al, "Source of sustained voltage difference between the xylem of a potted ficus benjamina tree and its soil", 2008.

The trend toward low supply voltages

- Q1-Is there a lower bound for the supply voltage?
- Q2-What are the best technologies for ULV circuits?

Fundamental limits on supply voltage From thermodynamics

What is the minimum energy stored in a capacitor to ensure that the binary states are distinguishable in the presence of thermal noise?

Any energy storage element (or "degree of freedom") in thermal equilibrium holds an average noise energy of *kT/2*.

Fundamental limits on supply voltage From thermodynamics

What is the minimum energy stored in a capacitor to ensure that the binary states are distinguishable in the presence of thermal noise (Theis & Solomon 2010)?

The charge Q_{bit} stored in C is

The bit (=1) energy is
$$\frac{1}{2}CV_{bit}^2$$

To distinguish bit energy from noise energy we must have

$$\frac{1}{2}CV_{bit}^2 > \frac{kT}{2} \Longrightarrow V_{bit}^2 > \frac{kT}{C}$$

$$Q_{bit} = CV_{bit} \Rightarrow V_{bit} > \frac{kT}{Q_{bit}} = \frac{kT}{Nq}$$

N is the number of electrons and $q=1.6 \times 10^{-19}$ C is the electron charge

 $N = 1 \Longrightarrow V_{bit} > \frac{kT}{q} = 25.9 \text{ mV}, C > 6.18 \text{ aF}$

 $N = 1000 \Rightarrow V_{bit} > 25.9 \ \mu\text{V}, C > 6.18 \ \text{pF}$

Eight standard deviations give an error probability of ~ 10⁻¹⁵

Thermal noise limits for supply voltages of logic and static memory

Fundamental limits on supply voltage From device physics - Minimum supply voltage for the standard CMOS inverter

Regenerative logic requires that

Voltage gain |≥1

Prof. James Meindl: Theoretically, the minimum supply voltage for a CMOS inverter is 2 (In2) (kT/q) = 36 mV at room temperature (IEEE JSSC, 2000)

Searching for the millivolt switch

n<1 *C*_D<0???

Change of physical principle:

Thermal injection \rightarrow Tunneling

Searching for the millivolt switch

Searching for the millivolt switch

(a) Mechanical switch. When $V_{GS} > V_{PI}$, the electrostatic force is sufficient to bring the source into contact with the drain.

 (b) Current versus gate voltage characteristics for a mechanical switch. The switch exhibits a hysteretic switching behavior VRL ≠ VPI

Ultra-low voltage (ULV) CMOS

References

- R. M. Swanson and J. D. Meindl, "Ion-implanted complementary MOS transistors in low voltage circuits," *IEEE J. Solid State Circuits*, Apr. 1972.
- T. N. Theis and P. Solomon, "In quest of 'the next switch': prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor," *Proceedings of the IEEE*, Dec. 2010.
- V. Pott et al. "Mechanical computing redux: relays for integrated circuit applications," Proceedings of the IEEE, Dec. 2010
- D. Perlmutter, Sustainability in silicon and systems development, 2012 IEEE International Solid-State Circuit Conference, San Francisco, CA, Feb. 2012.
- R. H. "Dennard, "Past Progress and Future Challenges in LSI Technology", IEEE Solid-State-Circuits Magazine, Spring 2015.
- Gordon E. Moore (INTEL), "No exponential is forever" <u>http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01234194</u>

Chapter 2 Subthreshold MOSFET model

The MOS transistor Output characteristics @ V_D=V_G

SBCCI 2015

Weak inversion (subthreshold) MOSFET model

SBCCI 2015

Low-frequency small-signal model in weak inversion

Low-voltage operation of the commonsource amplifier

Intrinsic gain stage

weak inversion operation V_{DD} (I_B ideal current source) I_{B} $\bigvee_{O} |A_{V}| = \frac{g_{m}}{g_{md}} = \frac{g_{ms} - g_{md}}{ng_{md}} = \frac{1}{n} \left(\frac{g_{ms}}{g_{md}} - 1 \right)$ $\frac{g_{ms}}{g_{ms}} = e^{\frac{V_{Ds}}{\phi_t}}$ g_{md} M₁ $g_{ms} = g_{md} @ V_{DS} = 0$ I_{D} g_{md} g_{ms} V_{DS}

Low-voltage operation of the commonsource amplifier

Low–voltage operation of the CMOS

Low-voltage operation of the commongate amplifier

The common-gate amplifier provides a voltage gain of greater than unity for $V_{DS}>0$. \rightarrow Very useful property for lowering the supply voltage limit for the operation of oscillators (later).

Common- gate Colpitts oscillator

Zero-VT MOSFETs

1 – high current/unit area for low voltages

I-V characteristics of diode-connected MOSFETs (IBM 130nm)

SBCCI 2015

Zero-VT MOSFETs

$2 - high g_m/C$ (f_T) for low voltages

Zero-VT MOSFETs

V_{in}

 $I_D \ge V_{DS} (V_S = V_B)$ characteristics for a zero-VT transistor with W/L=2500µm/420nm. For V_{GS} = 0 V and V_{DS} = 25 mV the values of the common-gate and common-source gains are 1.56 and 0.53, respectively (moderate inversion operation).

References

- R. M. Swanson and J. D. Meindl, "Ion-implanted complementary MOS transistors in low voltage circuits," *IEEE J. Solid State Circuits*, vol. 7, pp. 146-153, Apr. 1972.
- J. D. Meindl and A. J. Davis, "The fundamental limit on binary switching energy for terascale integration (TSI)," IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1515-1516, Oct. 2000.
- E. Vittoz, "Weak inversion for ultimate low-power logic", in Low-Power Electronics Design, CRC Press, 2005.
- C. Galup-Montoro and M. C. Schneider, <u>"Mosfet Modeling For Circuit Analysis</u> <u>And Design</u>", International Series on Advances in Solid State Electronics and Technology, World Scientific, 2007
- Márcio Cherem Schneider and Carlos Galup-Montoro, CMOS Analog Design Using All-Region MOSFET Modeling, Cambridge University Press, 2010.

Chapter 3 Subthreshold CMOS logic and Schmitt trigger

Regenerative Property

What's the minimum supply voltage for "correct" operation?

THE CMOS INVERTER IN WEAK INVERSION - 1

THE CMOS INVERTER IN WEAK INVERSION - 2

In the ideal case of NMOS and PMOS transistors with the same strength

$$\left|\frac{dV_O}{dV_I}\right|_{V_O = \frac{V_{DD}}{2}} = \frac{e^{\frac{V_{DD}}{2\cdot\phi_t}} - 1}{n}$$

V

The minimum operating supply voltage of the inverter and any CMOS static logic gate must be at least equal to unity, *i.e.*

$$\left|\frac{dV_O}{dV_I}\right|_{V_O = \frac{V_{DD}}{2}} = 1 \qquad \left|\frac{dV_O}{dV_I}\right|_{V_O = \frac{V_{DD}}{2}} = \frac{e^{\frac{V_{DD}}{2\cdot\phi_t}} - 1}{n}$$

 $V_{DD\min} = 2\phi_t \ln(2) = 36 \text{mV} \text{ at } 300 \text{K}$ for *n*=1

• 2 internal nodes (VX and VY)

- Feedback transistors (P2/N2) controlled by the output
- Hysteresis dependent on VDD & relative transistor strength
- Modeled in strong inversion but not in weak inversion

•For symmetric operation, corresponding NMOS and PMOS MOSFETs have the same current capability.

6-transistor (6-T) Schmitt Trigger

What is the minimum operating voltage that results in gain = -1 ?

$$V_{DD\min} = 2\phi_t \ln\left(\frac{1}{\sqrt{73}-8}\right) = 31.5 \text{mV} \text{ at } 300 \text{K}$$

73 is the best number !

SBCCI 2015

ST inverter is less sensitive to process parameter (VT) spreading than the standard inverter.

TEST CHIP

$VTC - ST \times INV - V_{DD} = 150, 100, 75, 50 mV$

References

- J. D. Meindl and A. J. Davis, "The fundamental limit on binary switching energy for terascale integration (TSI)," IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1515-1516, Oct. 2000.
- E. Vittoz, "Weak inversion for ultimate low-power logic", in Low-Power Electronics Design, CRC Press, 2005.
- J. Rabaey, *Low Power Design Essentials,* Springer, New York, NY, 2009.
- N. Lotze and Y. Manoli, "A 62mV 0.13um CMOS standard-cell-based design technique using Schmitt-Trigger logic", *IEEE Journal of Solid-State Circuits*, vol. 47, no. 1, pp 47-60, Jan 2012.

Chapter 4 ULV rectifiers

Ultra-low-voltage diode circuits

How to substitute the constant 'diode voltage drop' model? Use the i-v characteristic of the diode and the load current

$$I_D = I_S[e^{\frac{V_D}{n\phi_t}} - 1] \qquad \qquad \phi_t = \frac{kT}{q} \\ n \sim 1 \text{ to } 1.5$$

Voltage rectifier with pure capacitive load

Steady-state analysis Assumption: very low ripple (high C) \rightarrow V_o \cong constant $+ V_{D} - V_{O}$ $\begin{bmatrix} I_{D} & D \\ + \\ V_{iD} & C \end{bmatrix} = \begin{bmatrix} \frac{1}{T} \int_{-T/2}^{T/2} I_{D} dt = \frac{I_{S}}{T} \int_{-T/2}^{T/2} [e^{\frac{V_{D}}{n\phi_{t}}} - 1] dt = \frac{I_{S}}{T} \begin{bmatrix} 0 \\ -T/2 \end{bmatrix} \begin{bmatrix} e^{\left(\frac{-V_{P} - V_{o}}{n\phi_{t}}\right)} - 1 \end{bmatrix} dt + \int_{0}^{T/2} \left(e^{\left(\frac{V_{P} - V_{o}}{n\phi_{t}}\right)} - 1 \right) dt = 0$ $\frac{V_o}{n\phi_t} = \ln\left[\frac{e^{V_P/n\phi_t} + e^{-V_P/n\phi_t}}{2}\right] = \ln\left[\cosh\left(V_P/n\phi_t\right)\right]$ $V_P >> n\phi_t$ **Power Detector** ^Vin ≬ $\frac{1}{1} V_{o} \qquad V_{P} \ll n\phi_{t} \quad \rightarrow \quad \frac{V_{o}}{n\phi_{t}} \cong \frac{1}{2} \left(\frac{V_{P}}{n\phi_{t}} \right)^{-1}$ n ∳₊ ln 2 V_{D} -T/2 0 T/2 **Peak Detector** Diode "ON" $-V_{P}$ voltage drop $V_P >> n\phi_t \rightarrow V_L \cong V_P - n\phi_t \ln 2$ T/2 -T/2 0

SBCCI 2015

Input

Voltage rectifier with DC load - 1

SBCCI 2015

Voltage rectifier with DC load - 2

Output voltage ripple

The discharge rate of the capacitor

$$\boldsymbol{I}_{C} = \frac{d\boldsymbol{Q}_{C}}{dt} = C \frac{d\boldsymbol{V}_{C}}{dt} \approx \boldsymbol{I}_{L} + \boldsymbol{I}_{S}$$

$$\int_{-T/2}^{0} dV_{C} = \Delta V \approx \frac{I_{L} + I_{S}}{C} \frac{T}{2} = \frac{I_{L} + I_{S}}{2fC}$$

The voltage multiplier - 1

N-stage voltage multiplier

Voltage doubler

Generation of voltages higher than V_{DD} for EEPROMs, flash memories.
Energy harvesting for RFID tag chips

The voltage multiplier - 2

Output voltage

$$\frac{V_L}{n\phi_t} = N \ln \left[\frac{I_0 \left(V_A / n\phi_t \right)}{1 + I_L / I_S} \right]$$

Modified Bessel function, first kind, order zero

Power conversion efficiency

$$PCE = \frac{P_{load}}{P_{in}} = \frac{V_L I_L}{P_{load} + P_{loss}} \quad \begin{array}{c} PCE \text{ is} \\ maximized \text{ for} \end{array} \quad \begin{array}{c} \frac{I_L}{I_S} = \frac{V_L}{Nn\phi_t} \end{array}$$

The voltage multiplier - 2

Model of the N-stage voltage multiplier

$$k_c = \frac{R_{ant}V_L I_L}{\left(n\phi_t\right)^2}$$

Design for minimum available power/maximum range in terms of k_c

SBCCI 2015

What about diodes?

Diode-connected zero-VTMOSFET - high drive capability

AC/DC converter in 130 nm CMOS technology

24-stage rectifier

References

- A. Jair Cardoso, M. C. Schneider, C. Galup-Montoro; "Design of very low voltage CMOS rectifier circuits"; *IEEE Circuits and Systems for Medical and Environmental Applications Workshop* (CASME 2010), Mérida, Mexico, Dec. 2010.
- Adilson Jair Cardoso et al. "Teaching low voltage electronics: the case of the rectifier circuit", IEEE International Conference on Microelectronic Systems Education (MSE), San Diego, June 2011.
- A. J. Cardoso *et al.*, "Analysis of the rectifier circuit valid down to its low-voltage limit", *IEEE Transactions on Circuits and Systems I: Regular Papers*, Jan. 2012.
- C. Galup-Montoro, M. C. Schneider, and M. B. Machado, "Ultra-low-voltage operation of CMOS analog circuits: amplifiers, oscillators, and rectifiers," *IEEE Trans. on Circuits and Syst. II, Exp. Briefs*, vol. 59. No.12, pp. 932-36, Dec. 2012.
- L. G. de Carli *et al.*, "Maximizing the Power Conversion Efficiency of Ultra-Low-Voltage CMOS Multi-Stage Rectifiers," *IEEE Transactions on Circuits and Systems I: Regular Papers,* April 2015.

Chapter 5 ULV oscillators and applications

Application of ULV oscillators for energy harvesters

SBCCI 2015

Inductive ring (X-coupled) oscillator - 1

Criterion for oscillation (Barkhausen)

 $\phi = 0 \& V_{out} / V_{in} = -1$

What's the minimum V_{DD} for oscillation?

SBCCI 2015

Inductive ring oscillator - 2

Similar to the result (/2) of the CMOS inverter

Inductive ring oscillator - 3

Introduce voltage gain

Questions:

- **1. How to reduce V**_{DD,min}?
- 2. How to increase the V_{DD}-limited voltage swing?

Change topology, e. g., take advantage of CG gain

The enhanced-swing Colpitts oscillator (ESCO)

For lossless inductors and capacitors

Colpitts oscillator: first prototype

Off-the-shelf components

Colpitts oscillator: second prototype

Colpitts oscillator – IC prototype

130 nm technology

Enhanced-swing ring oscillator (ESRO)

Fig. 12. Simulated (dotted line) and experimental (solid line) peak-to-peak gate voltage versus supply voltage of the ES inductive-load ring oscillator.

TABLE I

EXPERIMENTAL RESULTS FOR THE OSCILLATION FREQUENCY AND MINIMUM SUPPLY VOLTAGE OF THE OSCILLATOR TOPOLOGIES

Topology	Theoretical V _{dd} (min) *	IC prototype 130nm CMOS		Discrete prototype	
		V_{dd} (min)	f_{osc}	V _{dd} (min)	f_{osc}
ILRO	$\phi_t \ln(1+n)$	53 mV	550 MHz	50 mV	11 MHz
ESRO	$\phi_t \ln \left(1 + n \frac{L_1}{L_1 + L_2}\right)$	32 mV	400 MHz	3.5 mV	1.1 MHz
ESCO	$\phi_t \ln \left(1 + \frac{C_2/C_1}{1 + L_1/L_2}\right)$	86 mV	700 MHz	15 mV	108 kHz

* For lossless passive devices and operation of MOSFETs in weak inversion Values of components:

ILRO - IC prototype - L = 100 nH, Q = 8.

ILRO - discrete prototype - L = 4.6 uH, Q = 50.

 $ESRO - IC \text{ prototype} - L_1 = 20 \text{ nH}, Q_1 = 9; L_1 = 80 \text{ nH}, Q_2 = 8.$

Energy harvester

SBCCI 2015

References

- C. Galup-Montoro, M. C. Schneider and M. B. Machado; <u>"On the minimum supply</u> voltage for CMOS analog circuits: rectifiers and oscillators", MOS Modeling and Parameter Extraction Working Group MOS-AK/GSA Workshop Dec. 7, 2011 Washington DC.
- C. Galup-Montoro, M. C. Schneider, and M. B. Machado, "Ultra-low-voltage operation of CMOS analog circuits: amplifiers, oscillators, and rectifiers," *IEEE Trans. on Circuits and Syst. II, Exp. Briefs*, Dec. 2012.
- M. B. Machado et al., "On the minimum supply voltage for MOSFET oscillators", IEEE Transactions on Circuits and Systems I: Regular Papers, Feb 2014.
- M. B. Machado et al.,"Fully integrated inductive ring oscillators operating at VDD below 2kT/q,", Analog Integrated Circuits and Signal Processing, Jan 2015.